

Progress of Managed Aquifer Recharge in China

Weiping Wang, Shisong Qu, Weidong Zhao and Xiuxiu Sun

University of Jinan stu_wangwp@ujn.edu.cn

Outlines

Types of MAR

1

2

3

4

5

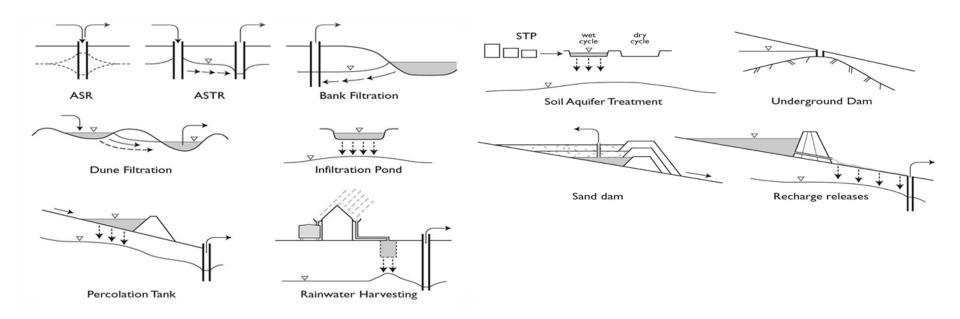
6

Progress of MAR

Facing Problems of MAR

Potential for MAR of Channel Infiltration

Conclusions

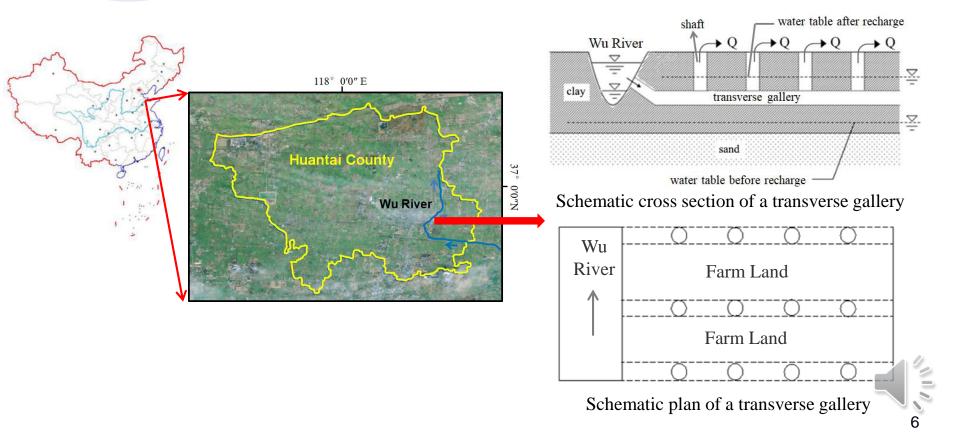


1. Why Did MAR

- Groundwater over-exploitation in North China resulted in geological hazards of land subsidence, karst collapse, springs stopping flowing, salt water intrusion and intensified the groundwater pollution etc..
- Managed Aquifer Recharge is the intentional recharge of water to aquifer for subsequent recovery or environmental benefit (*Peter Dillon*).
- Managed Aquifer Recharge is an effective measure of conjunctive uses of surface water and groundwater to solve those challenges.

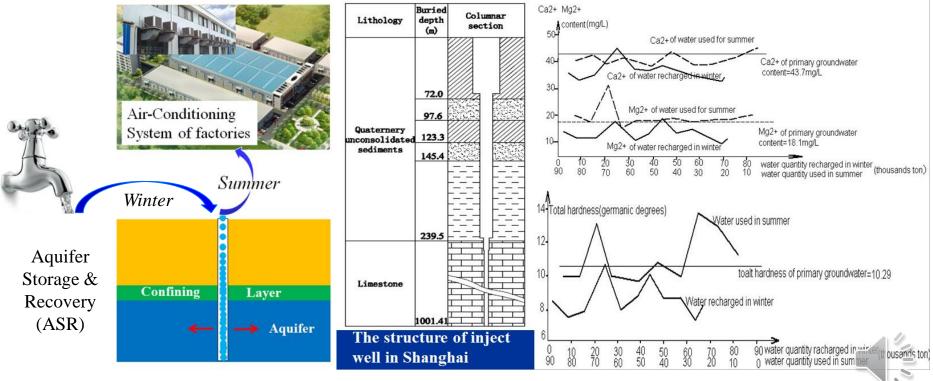
2. Types of MAR

Australia NRMMC-EPHC-NHMRC, 2009

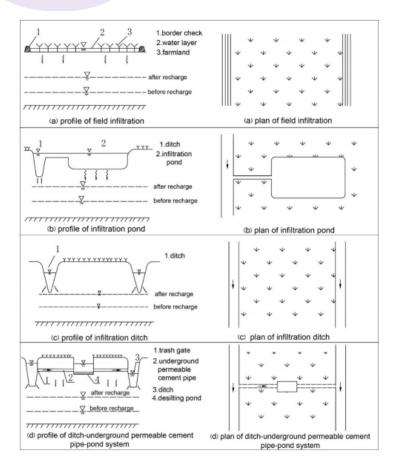

3 Progress of MAR in China

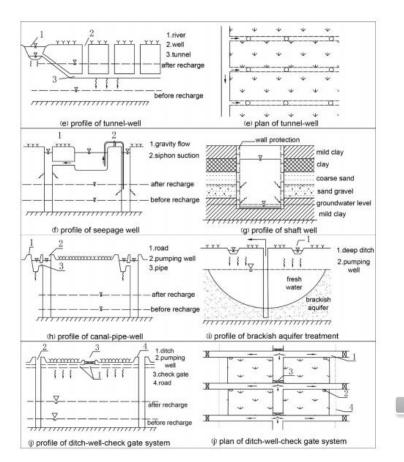
Three stages of MAR development

- Stage 1 MAR applied to agricultural production and industrial production.
- Stage 2 MAR applied to ecological protection and increase in urban water supplies.
- Stage 3 MAR applied to multi-objectives with multisource water of reclaimed water, inter-basin water transfer, roofwater, etc.

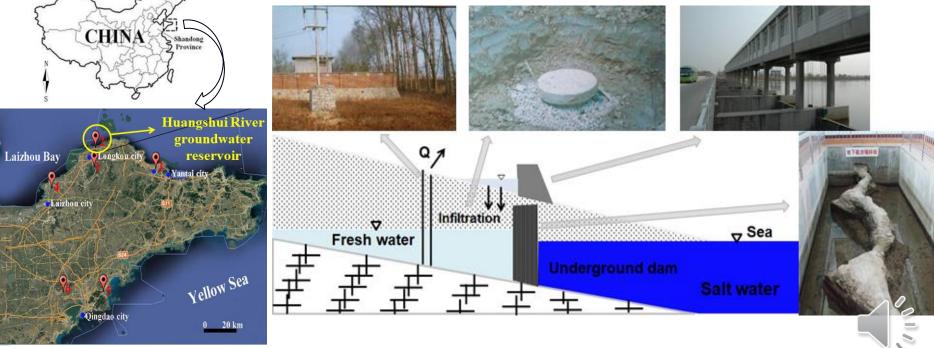

Case 1: MAR Applied to agricultural production in Huantai County in piedmont plain area

Stage 1



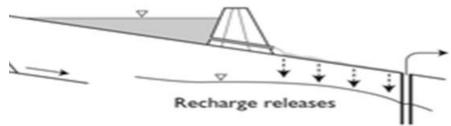

Case 2: ASR of fracture-karst aquifer recharge with tap water for storing and recycling energy

0


Case 3: Diversity MAR applied to agricultural production in NCP

Case 1: Groundwater dam in Shandong Peninsular applied in preventing salt water intrusion and augment water supply

9


Four underground reservoirs indices

Reservoir	TSC	DMAC	CA (km²)	NCA (km²)	RA (km²)	LUD (m)	ADD (m)	WS (10⁴ m³)	СТ
Balisha River	42.9	35	14.7	8.8	14	756	8.5	1699	1988
Huangshui River	5359	3852	1015.7	102.9	51	5842	10	4000	1992
Shiren River	130	120	20.85	20.85	21	620	17	100	1994
Wanghe River	5693	2080	326.8	173.4	68	14500	10	5416	2005

NOTE TSC: Total storage capacity(10⁴ m³); DMAC: Designed Maximum Active Capacity(10⁴ m³); CA: Catchment Area; NCA: Net Catchment area; RA: Reservoir Area; LUD: Length of Underground Dam; ADD: Average Depth of Dam; WS: Water Supply; CT: Completion Time.

Case 2: Karst aquifer recharged by water releasing from reservoir at the strong leakage reach of river for multi-objectives

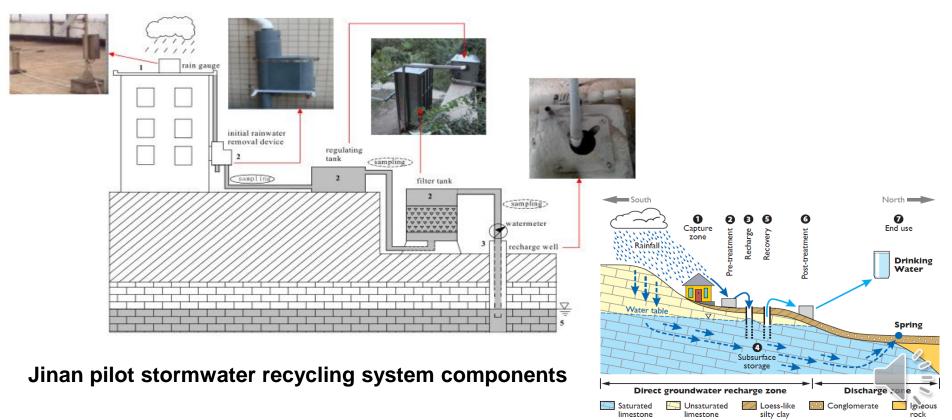
Table 1 Basic control items and limit value of groundwater recharge in municipal wastewater							
Order number	Basic control items	Unit	Surface spreading ^a	Well injection			
1	Chroma	Diluted multiples	30	15			
2	Turbidity	-	10	5			
3	PH	mg/L	6.5~8.5	6.5~8.5			
4	Total hardness(CaCO ₃)	mg/L	450	450			
5	Dissolved total solids	mg/L	1000	1000			
6	Sulfate	mg/L	250	250			
7	Chloride	mg/L	250	250			
8	Volatile phenol class(Phenol)	mg/L	0.5	0.002			
9	Anionic surfactant	mg/L	0.3	0.3			
10	COD	mg/L	40	15			
11	BOD5	mg/L	10	4			
12	Nitrate(by N)	mg/L	15	15			
13	Nitrite(by N)	mg/L 0.02		0.02			
14	Ammonia nitrogen(by N)	mg/L	1	0.2			
15	Total phosphorus(by P)	mg/L	1	1			
16	Animal and plant oil	mg/L	0.5	0.05			
17	Petroleum	mg/L	0.5	0.05			
18	Cyanide	mg/L	0.05	0.05			
19	Sulfide	mg/L	0.2	0.2			
20	Fluoride	mg/L	1	1			
21	Fecal coliform number	A/L	1000	3			
^a Clay thickness in soil should not be less than 1 m, If less than lm according to the well injection requirements.							

ICS 13.060 P 40

中华人民共和国国家标准

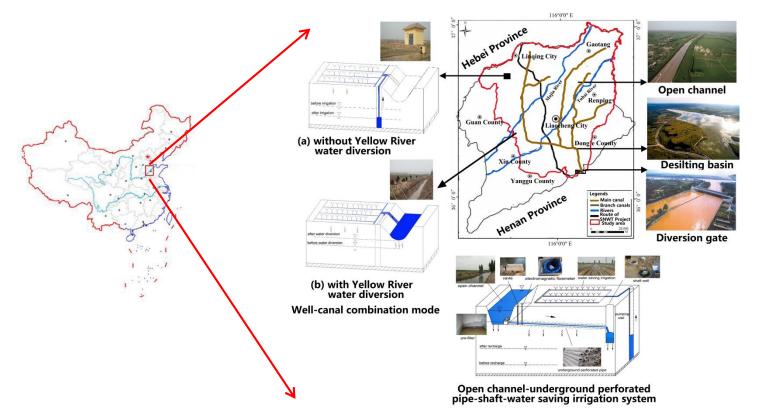
GB/T 19772-2005

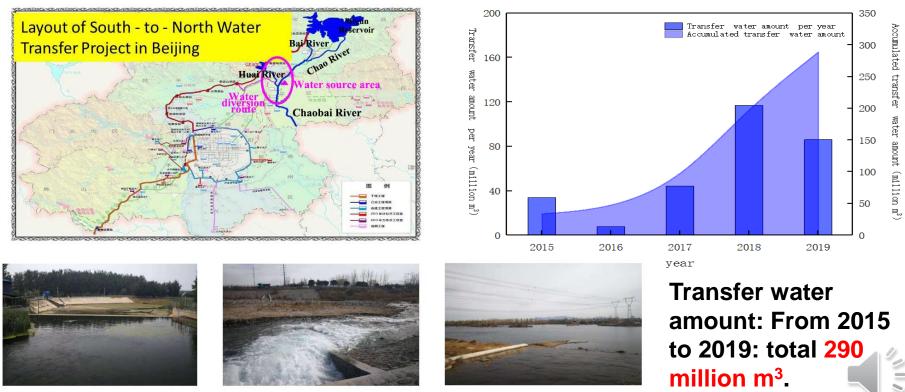
城市污水再生利用 地下水回灌水质


The reuse of urban recycling water Water quality standard for groundwater recharge

2005-05-25 发布	2005-11-01 实施
中华人民共和国国家质量监督检验检疫总局 中 国 国 家 标 准 化 管 理 委 员 会	发布

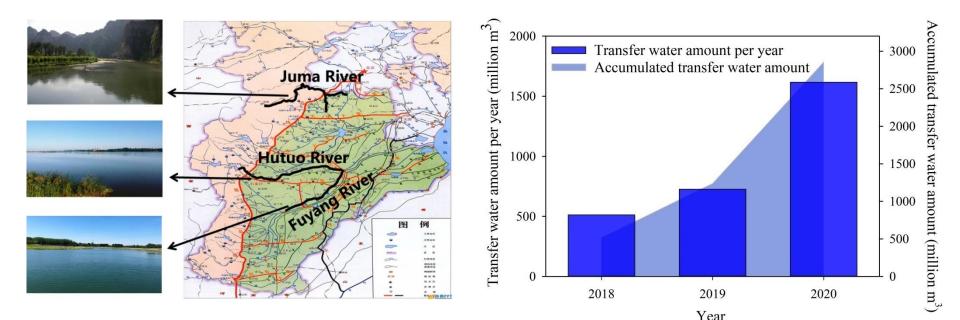
Order number	Selection control items	limiting value	Order number	Selection control items	limitin value		
1	Total mercury	otal mercury 0.001 27 Trichloroethylene		0.07			
2	Mercury alkyl	Negative	28	Four chloroethylene	0.04		
3	Total cadmium	0.01	29	Benzene	0.01		
4	Six valent chromium	0.05	30	Toluene	0.7		
5	Total arsenic	0.05	31	Xylene ^a	0.5		
6	Total lead	0.05	32	Ethylbenzene	0.3		
7	Total nickel	0.05	33	Chlorobenzene	0.3		
8	Total cymbals	0.0002	34	1,4-Dichlorobenzene	0.3		
9	Total silver	0.05	35	1,2-Dichlorobenzene	1		
10	Total copper	1	36	Nitrochlorobenzeneb	0.05		
11	Total zinc	1	37	2,4-Dinitrochlorobenzene	0.5		
12	Total manganese	0.1	38	2,4-Dichlorophenol	0.093		
13	Total selenium	0.01	39	2,4,6-Trichlorophenol	0.2		
14	Total iron	0.3	40	Dibutyl phthalate	0.003		
15	Total barium	1	41	Dioctyl phthalate	0.008		
16	Benzo (a) pyrene(BaP)	0.00001	42	Acrylonitrile	0.1		
17	Formaldehyde	0.9	43	Dichlorodiphenyltrichloroe thane(DDT)	0.001		
18	Aniline	0.1	44	Hexachlorocyclohexane	0.005		
19	Nitrobenzene	0.017	45	Hexachlorobenzene	0.05		
20	Malathion	0.05	46	Heptachlor	0.0004		
21	Dimethoate	0.08	47	Hexachlorocyclohexane gamma-isomer	0.002		
22	Parathion	0.003	48	Trichloroacetaldehyde	0.01		
23	Methyl parathion	0.002	49	Acrolein	0.1		
24	Pentachloropheno	0.009	50	Boron	0.5		
25	Trichloromethane	0.06	51	Total alpha radioactivity	0.1		
26	26 Carbon tetrachloride 0.002 52 Total beta radioactivity 1						
Note: the unit of the 51,52 item are Bq/L, and the units of the other items are mg/L.							
^a Xylene refers toP-xylene, M - xylene and O - xylene.							
b Nite	ochlorobenzene refers to	P - nitrochlor	obenzene	, M - nitrochlorobenzene an	d 0 -		


Case 2: MAR with roofwater for drinking water in Jinan


Published papers funded by project of DANIDA coordinated by the DFC through the Grant no.17-M08-GEU

Environmental		2280	Front. Earth Sc		Author's per	sonal.conv	1				
https://doi.org/	wat		https://doi.org/1	wa	Environmental Science and Pollution Research	sonarcopy		TITLE	JOURNAL	TIME	DOI
ORIGINAL	Article		REVIEW	Article	https://doi.org/10.1007/s11356-020-11353-3						
	A New P			Specific	RESEARCH ARTICLE	۲		Managing aquifer recharge with			
Modelin		Effective	Dhuala			Const for Constance		multi-source water to realize	Environmental		https://doi.org/10.1
on man	Catchme	aquifers i	Physic	North C	Marchine Marchine Marchine	P			Science and	2020.	
	Catchine	surface w	Yellow	North	Managing aquifer recharge with multi-s			sustainable management of	Pollution	12.14	<u>007/s11356-020-</u>
Qingyang Z	Zhengxian Zhar	2011 52		Shuai Liu ¹ , V	sustainable management of groundwat	er resources in Jinan, China		groundwater resources in Jinan,		12.14	11353-3
Wenliang Li	and Ludong Ni			1 School of 1	Zhengxian Zhang ^{1,2} · Weiping Wang ³			China	Research		<u> </u>
Received: 14 Ja	¹ School of Wa ZZXSIN@126	and Qiaoyi X		150531306 ² School of I	Energy and Energy and			China			
© Springer-Verl	nld19941121			Shenzhen	Received: 4 May 2020 / Accepted: 20 October 2020			Specific Types and Adaptability			
Abstract	² Jinan City Qi kannania		~	 Correspon 	C Springer-Verlag GmbH Germany, part of Springer Nature 2020					2020.	https://doi.org/10.2
The Yellow	 happyxuqiac Corresponde 	ABSTRACT	© Higher Edu	Received: 30 S	Abstract			Evaluation of Managed Aquifer	Water		https://doi.org/10.3
desilting, 85		With rapid urban	Abstract To	Abstract: Th	Managed aquifer recharge (MAR) is an important approach to ac and aquifer degradation. In this study, the large-scale recharge ex			Recharge for Irrigation in the	(Tatol	2.18	<u>390/w12020562</u>
risks, and th Atrazine is o	Received: 15 Au	Thus, managed a	Yellow River	well irrigatio	sources. The MAR with multi-source water was investigated by			North China Plain			
managed aq	Abstract: Inves	the water supply	the Yufuhe F	managed aqu	recharged quantity and period in Jinan, China. Results showed t recharge was relatively good. However, the use of different wat						
atrazine tran	research topic f and recharge. H	recharge rate int specific hydroged	was undertak uniformity co	played an im types based	some groundwater quality indexes, which might further induce			Physical clogging experiment of			
(non-uniforn data of breal	subject to regi	strata of gravel,	used as an int	has been wid	quality in porous and karst aquifer displayed deteriorating trends or effects of recharge water sources on regional groundwater quali			sand gravel infiltration with Yellow	Frontiers of	2019.	https://doi.org/10.1
Results show	The convention	A hydraulic mod	of raw sand o	where canals	Yellow River (YR) > Wohushan Reservoir (WR). Meanwhile,						007/s11707-019-
of the initial	study, we devel in Jinan spring	groundwater mo	conducted wi cm and inflov	water, rechar channel–und	during different water source recharge. Accordingly, relevant su			River water in the Yufuhe River	Earth Science	12.23	
atrazine can pollution for	degree (WTFRI	and estimate rive	mg/L, and 10	scope and ar	MAR with multi-source water and explore the high-efficiency at	nd low-risk recharge mode.		channel of Jinan, China			<u>0772-x</u>
the exogeno	2014 to 2017. 1	68.1% when the	and in the r endogenous	Finally, an ad	Keywords Managed aquifer recharge · Artificial recharge · Multi	-source water · Improved matter-element model · Groundwater					
models can l	spring groups v	conductivity, wa 68.3%. Results o	observed in	City of Shane sand, specifi	quality			Effective water quantity of multi-			
heterogeneo	in high relatior sites were basi	that most of the	concentration	that MAR is				source water recharging aquifers			
Keywords N	aquifers from a	aquifers.	increased hy- result indicate		Introduction	MAR include bank filtration, well injection, rainwater har-				2019.	https://doi.org/10.2
	as preferential	Key words effe	capability wit	Keywords: t	Managed aquifer recharge (MAR) was an increasingly com-	vesting, and infiltration ponds (Ebrahim et al. 2016; Ganot et al. 2017). MAR provided a series of technical solutions to		in Yufuhe River based on	Water Supply	1.1	166/ws.2019.109
Introduct	WTFRD provid could be consid		content show 10 µm and 5	·	mon measure for increasing urban water supply and sustain-	sustainably manage water resources by not only recharging		groundwater and surface water		1.1	<u>100/ws.2019.109</u>
	low-cost combi		accumulated	1.1.1	ing water resilience (Dillon 2005; Rodríguez-Escales et al.	groundwater but also displaying an integrated vision of wa-		semi-coupled modelling			
The Yufuhe Spring Basi			diameter 10-	1. Introductio	2017). Excess water was stored in the aquifers for future consumption by MAR. And the major methods used for	ter resources, following the EU Water Framework Directive approach (Escalante et al. 2019). The groundwater level		semi-coublea modellina			
managed aqu	Keywords: hyd index; water ta	INTRODUCTI	column. And size after me	Managed recovery or er		dropped rapidly over 10 m per year in China. And ground-		A New Perspective to Explore the			
pleted in th		RODUCIN	column. Fiel	different terrai	Responsible Editor: Xianliang Yi	water overexploitation had occurred in 164 areas of China's 31 provinces, affecting more than 180,000 km ² (Werner					
recharge wa period (Tieh		Managed aquit	effect of the	an effective w	Electronic supplementary material The online version contains supplementary material available at https://doi.org/10.1007/s11356-020-	et al. 2013). Groundwater funnel formed gradually and ex-		Hydraulic Connectivity of Karst	Water	2018	https://doi.org/10.3
lated by the	1. Introduction	recharging of v	quality of rec Yufuhe River	especially in se China. The av	11353-3.	panded by the groundwater depletion, which caused fre- quent land subsidence, water quality deterioration, and sea-		Aquifer System in Jinan Spring	vvater	2010	390/w10101368
the pumping of the Yufuh	Jinan is wel	or to benefit t	results of the	precipitation of	Weiping Wang	water intrusion. To alleviate the abovementioned issues, a		Catchment, China			
Yellow Rive	tourists. The na	et al. (2015) trea	Keywords	mainly relies	stu_wangwp@ujn.edu.en; wangweipingwp@126.com	series of water management measures had been carried out					
bidity of sou	development of	quality standar The recharged	exogenous pa	In the 1970s a groundwater.	1 State Key Laboratory of Water Resources and Hydropower	in China, such as improving irrigation technology and water efficiency, implementing water price reforms, and water use		Modeling colloid-associated			
	urban populatio prominent contr		180. 183	However, thes	Engineering Science, Wuhan University, Wuhan 430072, China	rights. However, the lack of detailed information on the			Environmental		https://doi.org/a0.1
Weiping W wangweipi	L	0		In this st	² State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029,	amount of groundwater extracted, and limited groundwater monitoring wells, as well as complex recharge water		atrazine transport in sand column	Environmental	2018	007/s12665-018-
1 School of	reduced conside	ground-channe		Two methods spreading me	China	sources, make groundwater management still face severe		based on managed aquifer	Earth Sciences	2010	
of Jinan, Ji	many times, and Moreover, consid	irrigation water		pipe-shaft-wa	³ School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China	challenges.		recharge			<u>7859-7</u>
an takan markara	moreo en conos	funnel (Rong e	Received Octobe								
Published onlia	Water 2018, 10, 1368;	doi: 10.2166/ws.2019.	E-mail: wangwe	Water 2020, 12, 56		Springer					

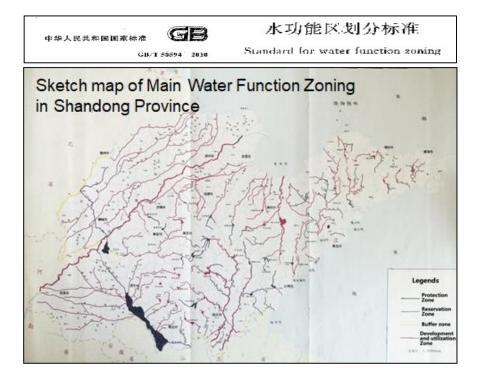
Case 4: MAR of open canal-underground perforated pipe-shaft system for irrigation in Linqing County, Yellow river flood plain area of NCP



Case 5: MAR of natural in-channel infiltration with South to North water for drinking and ecological water in Chaobai River, Beijing

From Binghua Li, Water Science and Technology Institute of Beijing (BWSTI)

Case 6: MAR of natural in-channel infiltration with South to North water for drinking and ecological water in Hutuo River, Fuyang River and Juma River, Hebei Province


Layout of South-to-North Water Transfer Project in Hebei Province Transfer water amount: From 2018 to 2020: total 2856 million m³.

4. Facing Problems of MAR in China

- Lack of investigations on water quality risks of MAR to support development of technical guides and risk management strategies
- Guidelines for MAR with respect to types of recharge methods, especially infiltration by natural channels or canals, are urgently needed.
- A diverse range of feasible, convenient and cost-effective Mar techniques fitting to local hydrogeological conditions still need to be developed and demonstrated through pilot projects.
- More attentions to operate and maintain MAR are also helpful.

5. Potential for MAR of channel infiltration

Water Function Zones	Proportion of River Length			
Drinking water	31.9%			
Agricultural water	47.5%			
Industrial water	14.4%			
Fishery water	0.7%			
Landscape and entertainment water	1.2%			
Transition region	0.7%			
Sewage control area	3.7%			
Total river lengths	7820.1 Km			

19

The water function zoning in China since 2010 has provided a necessary condition for applying MAR of channel infiltration in quality of source water and end use.

6. Conclusions

- With the completion of the Middle and East Route of the south-to-North Water Transfer Project, new stable water has transferred in the North China Plain except Yellow River water for MAR.
- The quality and quantity of reclaimed water are stable and sufficient due to the development of urban sewage treatment technologies. Groundwater recharge with reclaimed water project can provide reliable irrigation water for agriculture.
- Further research is necessary to realize all the potential of MAR: improving water quality, conjunctive use of surface and groundwater, storing water from long distance transfer, augmenting urban and irrigation supplies

Thank You for Attention !

000