

Managing Aquifer Recharge: A Showcase for Resilience and Sustainability

Yan Zheng^{1*}, Andrew Ross², Karen G. Villholth³, and Peter Dillon⁴

¹School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China 518055
 ² Environmental Defense Fund, San Francisco, California 94105, USA
 ³ International Water Management Institute (IWMI) - Southern Africa, Pretoria, South Africa
 ⁴ CSIRO Land and Water and National Centre for Groundwater Research and Training, Adelaide, Australia

2021.03.22

*Presenting: yan.zheng@sustech.edu.cn ©

WORLD WATER DAY 2021 WORKSHOP ON MAR IN CHINA CHINA-DENMARK

According to IAH-MAR Commission (recharge.iah.org), managed aquifer recharge (MAR), also called groundwater replenishment, water banking and artificial recharge, is the *purposeful recharge* of water to aquifers for **subsequent recovery or environmental benefit.**

Part I

Managed Aquifer Recharge 含水层回补管理

荷兰阿姆斯特丹基于含水层回补管理 (MAR)技术的绿色供水系统

土壤-含水层处理SAT技术 Soil-Aquifer Treatment

According to IAH-MAR Commission (recharge.iah.org), managed aquifer recharge (MAR), also called groundwater replenishment, water banking and artificial recharge, is the *purposeful recharge* of water to aquifers for **subsequent recovery or environmental benefit.**

根据水最终用途,通过目标补水、抽水等,人工控制含水层水循环

河岸带过滤RBF技术 River Bank Filtration

UNESCO IHP-VIII WATER SECURITY (2014-2021)

Theme (2) **"Groundwater in a Changing Environment"** In order to **incorporate MAR to Integrated Water Resource Management**, the Focal Area "Addressing strategies for management of aquifer recharge" will

- develop and apply methods to assess the impact of MAR schemes on water availability and quality, social and economic resilience and local ecosystems;
- evaluate the risks and benefits of recycling appropriately treated wastewater and storm water for safe irrigation or drinking water supplies;
- enhance governance capacities, and institutional and legal frameworks to aid effective implementation.

and the second

Protecting groundwater resources is vital for achieving Sustainable Development Goals.

PartI

Locations of 28 MAR Schemes in Zheng, Y., Ross, A., Villholth, K and Dillon, P. (eds) (in press) Managing Aquifer Recharge: A Showcase for Resilience and Sustainability. UNESCO Publication

Part To what extent is MAR Infrastructure an economical & sustainable water resource system? Sustainable water resource systems are those designed and managed to fully contribute to the objective of society, now and in the future, while maintaining their ecological, environmental, and hydrological integrity. Source: Loucks and Gladwell (ed.) 1999. Sustainability Criteria for Water **Resources Systems, UNESCO-IHP Series, Cambridge University Press, pp 137** Wanted: Outstanding examples of sustainable and economic managed aguifer recharge

UNESCO-IAH-GRIPP book on Managed Aquifer Recharge planned in 2018

Sustainability Indicator Development

Cartoon on "Environment Sustainability"

Sustainability Index:

- Reliability
- Resilience
- Vulnerability

ENVISION by ASCE:

- Quality of Life
- Leadership
- Resource Allocation
- Natural World
- Climate and Risk

Methods to measure sustainability of water resource systems are inadequate.

Part II Sustainability Index (SI) for the largest aquifers

Based on GRACE groundwater drought index (GGDI) 2002 - 2017

Source: Thomas et al. 2017. Global Assessment of Groundwater Sustainability Based on Storage Anomalies. Geophys. Res. Lett. 44:11,445-11,455.

Part II ENVISION: Twin Oaks Aquifer Storage and Recovery

Figure 1. The Twin Oaks Facility in Bexar County, Texas. Data courtesy of SAWS, Texas Natural Resources Information System (TNRIS), Texas Parks and Wildlife Department (TPWD). Saville et al 2016. Sustainability

Conflation of project purpose and project design
 No weighting of points based upon local needs

- (3) Project-oriented focus omits systems scale
- (4) Uneven weighting of three sustainability pillars
- (5) Positive scoring overlooks negative aspects of projects

Pump groundwater from the Edwards Aquifer and store it in the more stable Carrizo Aquifer for peak demand. Envision rates the sustainability of an infrastructure project based on 60 criteria, called credits, in five categories: Quality of Life, Leadership, Resource Allocation, Natural World, and Climate and Risk. https://www.asce.org/envision/

Part II **Groundwater Resources Sustainability Indicators**

Table 1. Groundwater Resources Sustainability Indicators		
Indicators	Category	
Renewable groundwater resources per capita (m ³ /year)	Env, Socio-Econ	Groundwater resources sustainability
Total groundwater abstraction/Groundwater recharge	Socio-Econ, Env	indicators
Total groundwater abstraction/Exploitable groundwater resources	Socio-Econ, Env	
Groundwater as a percentage of total use of drinking water at national level	Health, Ecol	
Groundwater depletion	Socio-Econ, Env, Ecol	
Total exploitable non-renewable groundwater resources/Annual abstraction of non-renewable groundwater resources	Env, Socio-Econ	
Groundwater vulnerability	Env, Socio-Econ	UNESCO, LAEA, LAH UNESCO, LAEA, LAH Editors Janoslav Vrba
Groupdwater quality	Ecol/Health, Socio-	IHP-VI, SERIES ON GROUNDWATER No. 14
	Econ, Env	
Groundwater treatment requirements	Ecol/Health, Socio-Econ	

To ensure resource integrity and security, groundwater quality and quantity both need protection. **SUST**ech

Source: Vrba and Lipponen (ed.), UNESCO 2007

SUSTech

US EPA Sustainability Criteria

Sustainability Criteria

Below are the three pillars of sustainability, each with six broad topics that relate to its respective pillar. A brief explanation and example are provided for each topic. The examples are not intended to be inclusive.

Environmental									
Ecosystem Services Protect, sustain, and restore the health of critical natural habitats and eco- systems Example: Innovative nutrient management techniques (Green Infrastruc- ture) Green Engineering & Chemistry Design chemical products and processes to: eliminate toxic hazards, reuse or recycle chemicals, and reduce total lifecycle costs. Example: Lifecycle Assessments in molecular design	Air Quality Attain and maintain air-quality standards and reduce the risk from toxic air pollutants <i>Example: Investigate potential greenhouse gas emissions reduction strategies</i> Water Quality Reduce exposure to contaminants in water systems and infrastructure (including protecting source waters), optimizing aging systems, and next gen- eration treatment technologies & approaches. <i>Example: Purpose driven water reuse and innovative treatment technologies</i>	 Stressors Reduce effects by stressors (e.g. pollutants, greenhouse gas emissions, genetically modified organisms) to the ecosystem and vulnerable populations Example: Fate of modified nanoparticles in aqueous media Resource Integrity Reduce adverse effects by minimizing waste generation to prevent accidental release and future cleanup. Example: Innovative technologies and processes to prevent environmental impact 							
Social		Economic							
Environmental Justice Protect health of communities over-burdened by pollution by empowering them to take action to improve their health and environment Example: Establish partnerships with local, state, tribal, and Federal organizations to achieve healthy and sustainable communities Human Health Protect, sustain, and improve human health Example: Parameterize model which predicts developmental toxicology Participation Use open and transparent processes that engage relevant stakeholders Example: Develop database of reduced-risk pesticides for commonly used products, create greater public access and understanding about sustain- ability Education Enhance the education about sustainability of the general public, stake- holders, and potentially affected groups. Example: Provide opportunities for students and communities to learn about sustainability Protect, maintain, and restore access to basic resources (e.g. water, food, land, and energy) for current and future generations Example: Study impact of dispersants/oil combination on natural water- ways Sustainable Communities Promote the development, planning, building, or modification of communi-	Environmental Social Economic	Jobs Strengthen and maintain current and future jobs Example: Promote jobs through introduction of innovative technologies and practices that provide multiple benefits to communities and the environment Incentives Promote incentives that work with human nature to encourage sustainable practices. Example: Collaborative urban stormwater management approaches—Chesapeade Bay Partnership Supply and Demand Promote fully informed accounting and market practices to promote environmental health and social prosperity. Example: Full lifecycle cost and benefit accounting techniques Natural Resource Accounting Improve understanding and quantification of ecosystem services in cost benefit analysis. Example: Sustainability Assessments Costs Positively impact costs of processes, services, and products throughout the full lifecycle Example: Strive to develop waste-free processes—eliminating need for regulation, treatment, and disposal costs throughout systems Prices Promote cost throughes that zeduce aid; and pramium for next technologies							

ties to promote sustainable living

Promote cost structures that reduce risk and premium for new technologies. Example: Speed innovative technologies and approaches to the market

Part II

MAR sustainability indicators (from Zheng et al in press)

	Attribute	Indicator
VIENTAL TORS	Water quantity	 Monitoring of groundwater table demonstrates acceptable changes over 10 years, or > 3 years with high likelihood of maintaining resource integrity
		2. The ratio of volume of recovered water vs infiltrated water on an annual basis
	Wator quality	 Exceedance rate based on time-series monitoring of recovered or ambient water quality parameters
VIRON		 Exceedance rate based on time-series monitoring of source water quality parameters
EN	Ecosystem services	5. Changes in ecological flow (m/yr) and improvement in water quality in eco- system needing protection identified in a catchment water management plan
	Stressors	6. Energy requirements in KWh per cubic meter of recovered water, including monitoring and treating recovered water, solving clogging and low recovery efficiency issues
SOCIAL INDICATORS	Resource security	7. Clearly defined, transparent regulatory framework for MAR, preferably one that requires monitoring of resource integrity
	Human health	8. Permit granting process is based on sound risk assessment aimed to protect human health
	Community participation/ justice	9. Systematic Institutional arrangements for public and stakeholder consultation, preferably with regular publicly available reports of scheme outcomes

Indicator 1 - Resource Integrity Monitoring of groundwater table demonstrates acceptable changes over 10 years

Scanlon et al. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. *Env Res Lett* 11 (2016)035013

Arizona Showcase: Credits Crucial for Water Banking

Since the establishment of the Arizona Water Banking Authority (AWBA) in 1996, nearly 5,600 million cubic meter (MCM) of Colorado River water has been stored.

A flexible, mass-balance approach to MAR accounting:

- the future right to recover (i.e., pump) 95% of the volume that was stored;
- the ability to recover almost anywhere within the regional aquifer system;
- the ability of the recovered water to retain the legal character of the stored water.

After detailed calculation of losses, ADWR issues Long-Term Storage Credits

Seasholes, K. and Megdal, S. (2020) The Arizona Water Banking Authority: The Role of Institutions in Supporting Managed Aquifer Recharge. Case study 21 in Zheng et al (eds). Managing Aquifer Recharge: A Showcase for Resilience and Sustainability . UNESCO Publication, in press.

Cost and Cost-Benefit Analysis

Levelised Cost in 2016 US\$:

- the constant level of revenue necessary each year to recover all the capital, operating and maintenance expenses over the life of the project divided by the annual volume of water supply
- When recovery volumes unavailable or purpose not for recovery then annual recharge volume is used
- operating life = 30 years, discount rate = 5.0%, are used for most schemes

Benefit:

- Diverse benefits (water supply for cities and agriculture, reserve supply, water quality improvement)
- If the main benefit of a MAR scheme is additional water supply:
- 1) Volume of water recovered or supplied multiplied by the cost of supply;
- 2) Alternative cost of production (used for most schemes)
- Examples of other purposes:
- 1) Net benefit from agricultural/industrial production
- 2) Costs of the next cheapest water treatment facility

Levelised costs (US\$/m³)

Benefit : Cost ratiosPart

Volume weightee	d						
Mean:	0.75	0.16	0.10	BCR	2.19	2.16	7
No of schemes:	6	11	3		4	10	2

recycled water schemes natural water schemes riverbank filtration schemes Generally, MAR schemes achieved the same purpose at less than half the cost of alternatives.

MAR Technique:

ASR Aquifer-Storage= Recovery

Part IV

Lessons Learned and Implications

28. Zuurbier et al., Dinteloord, the Netherlands

1. Ahmed et al., Kulna, Bangladesh

Annual Recharge Volume Part N Micro:<10³ Small: 10³ - 10⁵ Medium:10⁵ - 10⁷ Large:> 10⁷ (m³/yr)

Volume of Recharge (10³ cubic meter)

Indicator 2. Resource Integrity – Water Quantity The ratio of volume of recovered water vs infiltrated water on an annual basis

V_{recovered}/V_{recharged} (n=26)

- Range: 0.0-8.3
- Mean: 1.4 ± 1.7

Induced Bank Filtration (n=3):

• 1.1, 1.2, 1.4

V_{recovered}/V_{recharged}>2 (n=5)

- London UK for drought: 3.2
- Sergovia Spain for drought: 3.6
- Sonora Mexico for irrigation: 3.0
- Windhoek Namibia for drought: 2.9
- Rajasthan India for drought: 8.3

Consider and track energy intensity in design and implementation

Energy Intensity

Volume of Recharge (10³ cubic meter)

Energy Intensity (n=23) kWh/m³

- Range: 0.02-3.9
- Mean: 0.9 ± 0.9

Induced Bank Filtration (n=4)

0.13, 0.68, 0.30, 0.16

Effluent as Source Water (n=7)

• 1.7 ± 1.1

Energy requirements in KWh per cubic meter of recovered water, including monitoring and treating recovered water, solving clogging and low recovery efficiency issues

Part IV

Global MAR Inventory

Quantity (km³/yr)

	Groundwater Use in 2010	MAR Quantity in 2015	%MAR of GW Use					
Global	982	9.9	1.0%					
USA	112	2.5	2.3%					
Australia	4.96	0.41	8.3%					
China	112	0.106	0.1%					
India (5 states)	39.8	3.07	7.7%					
Denmark	0.65	0.00025	0.0004%					
Finland	0.28	0.065	23.2%					
ixty years of global progress in managed aquifer recharge								

Hydrogeology Journal (2019) 27:1–30 P. Dillon^{1,2} • P. Stuyfzand^{3,4} • T. Grischek⁵ • M. Lluria⁶ • R. D. G. Pyne⁷ • R. C. Jain⁸ • J. Bear⁹ • J. Schwarz¹⁰ • W. Wang¹¹ E. Fernandez¹² • C. Stefan¹³ • M. Pettenati¹⁴ • J. van der Gun¹⁵ • C. Sprenger¹⁶ • G. Massmann¹⁷ • B. R. Scanlon¹⁸ • J. Xanke¹⁹ • P. Jokela²⁰ • Y. Zheng²¹ • R. Rossetto²² • M. Shamrukh²³ • P. Pavelic²⁴ • E. Murray²⁵ • A. Ross²⁶ • J. P. Bonilla Valverde²⁷ • A. Palma Nava²⁸ • N. Ansems²⁹ • K. Posavec³⁰ • K. Ha³¹ • R. Martin³² • M. Sapiano³³

Lessons Learned and Implications

- 1 This documentation of evolution of **exemplary schemes**, together with the applied **toolkit of sustainability assessment and economic analysis** are rich resources for water managers considering MAR and for stakeholders of MAR projects to enhance climate resilience and other social, economic and environmental benefits of their projects.
- 2 Schemes from higher income countries received **better sustainability ratings primarily due to supportive regulatory systems.** Strengthening institutional capacity for regulatory frameworks for water allocation, permit granting and water quality protection are especially relevant for developing countries and localities challenged by climate change.
- 3

Water **quality and quantity** challenges both need to be addressed to maintain resource integrity. **Ecological flow/**ecosystem and social objectives are often secondary to other objectives and deserve more attention by MAR promoters. **Energy intensity** while important is often poorly tracked. **Community engagement** also warrants greater attention.

United Nations Internationa Educational, Scientific and Hydrologica Cultural Organization Programme

Authors of 28 case studies

- Organizations that initiated and operated these MAR schemes
- UNESCO-IHP, IAH-MAR Commission, GRIPP
 - DANIDA Fellowship MAR-in-China

Acknowledgement

United Nations • Educational, Scientific and • Cultural Organization •

Managing Aquifer Recharge: A Showcase for Resilience and Sustainability

Yan Zheng^{1*}, Andrew Ross², Karen G. Villholth³, and Peter Dillon⁴

¹School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China 518055

² Environmental Defense Fund

³ International Water Management Institute (IWMI) - Southern Africa

⁴ CSIRO Land and Water and National Centre for Groundwater Research and Training, Adelaide, Australia

BSMAR 17: Resilience through Recharge and Recovery

2020.10.07 1:30 – 2:00 PM Water Resources Management Session

*Contact: yan.zheng@sustech.edu.cn

PartI

Table of Contents

Executive Summary

Section I - Synthesis

1. Introduction

Managing Aquifer Recharge: A Showcase for Resilience and Sustainability

- 2. An Overview of Features of the MAR Case Studies
- 3. Assessment of Environmental and Social Sustainability for Managed Aquifer Recharge Schemes
- 4. Economic Costs and Benefits of Managed Aquifer Recharge

Section II – 28 Case Studies, 4 in the US:

Case 10. Orange County Groundwater Basin Managed Aquifer Recharge Program using Santa Ana River Flow

Case 17. Intentional infiltration using irrigation canals to sustain Central Platte River ecology and irrigation

Case 18. Achieving water supply reliability at Hilton Head Island, South Carolina, USA Case 21. The Arizona Water Banking Authority: The Role of Institutions in Supporting Managed Aquifer Recharge

Do the Indicators work?

	ASCE Envision [2]	This Study					
60 sustair	ability criteria in 5 categories		9 sustaina	9 sustainability indicators in 5 categories of USEPA			
		Points for			Points for		
Level (+)	Performance Definition	Rating*	Level (-)	Performance Definition	Rating		
No added value	comparable to conventional	0					
Improved	is at or above conventional	1	Degraded	is below conventional alternative	-1		
Enhanced	Indications that superior performance is within reach	2	Diminished	Indications that there are risks for inferior performance	-2		
Superior	noteworthy	3	Inferior	obvious poor performance	-3		
Conserving	has achieved essentially zero impact	4	Harming	harmful impact in one aspect	-4		
Restorative	restores natural or social system	5	Debilitating	harmful impact in all aspects	-5		
*In Envision,	the points possible is variable fo	r each criter	ion, for exam	ole, "conserving" for "Protect free	sh		
water availab	oility" under category Resource A	llocation (to	otal points pos	ssible is 182) can earn up to 21 po	oints		
To simplify, t	his study assigns positive or nega	ative points	at a step value	e of 1			
					T .		

Higher Income -> Higher Sustainability Rating

Table 5. Sustainability Rating of MAR Cases

Country	Location Rating by Two Exper	Dating by	Indicator ¹ :	1	2	3	4	5	6	7	8	9
		Two Experts	Expert	GW	$V_{recharged}$ /			Ecol		Regu-		Commu
		Two Experts	Mean ²	level	V _{recovered}	GWQ	SWQ	flow	Kwh/m ³	lation	Per-mit	nity
High Income:	> 12,375			S E1 E2	S E1 E2	S E1 E2	S E1 E2	S E1 E2	S E1 E2	S E1 E2	S E1 E2	S E1 E2
Mean High In	come (n=17)		1.9	2.5	2.4	1.2	0.5	1.1	1.0	3.0	2.6	2.4
Upper Middle: 3,996 - 12,375												
Mean Upper	Middle (n=4)	Rating	1.3	2.1	2.3	-0.1	-0.3	1.3	1.0	2.1	2.1	1.0
Lower Middle	e: 1,026 - 3,995	2: Ennanced										
Mean Lower	Middle (n=7)	1: Improved	0.7	0.8	1.7	0.3	0.4	-0.2	1.3	0.4	0.6	1.5
Min		0: No Value A	dded	0.0	0.0	-3.0	-1.0	-3.0	-3.0	-1.0	0.0	0.0
Max				5.0	5.0	5.0	4.0	5.0	4.0	5.0	5.0	5.0
Mean of all s	chemes			2.1	2.2	0.8	0.4	0.8	1.1	2.3	2.1	2.0

Levelised cost Vs Annual recharge volume

Part III

10 Environmental Sustainability Indicators for MAR

A. Resource Integrity

- A.1 Water Quantity
- 1. Monitoring of groundwater table demonstrates acceptable changes over 10 years, or > 3 years with high likelihood of maintaining resource integrity
- 2. The ratio of volume of infiltrated water vs recovered water on an annual basis
- 3. For large schemes, change in renewable groundwater resources in target aquifer per capita (m³/year per capita) A.2 Water Quality
- 4. Exceedance rate based on time-series monitoring of recovered or ambient water quality parameters
- 5. Exceedance rate based on time-series monitoring of source water quality parameters
- 6. For large MAR schemes, percentage use as drinking water sourced from target aquifer

B. Ecosystem Services

- 7. Change in ecological flow (m³/yr) in ecosystems needing protection identified in a catchment water management plan
- 8. Change in peak flow (m³/s) for MAR intended for flooding control

C. Stressors

- 9. Energy requirements to monitor and treat recovered water, solve clogging and low recovery efficiency issues are not excessive
- 10. No unacceptable seepage, waterlogging, discharge occurs

4 Social Sustainability Indicators for MAR

- **D. Resource Security/Human Health**
- **11.** Clearly defined, transparent regulatory framework for MAR, preferably one that requires monitoring of resource integrity
- 12. Permit granting process is based on sound risk assessment aimed to protect human health
- 13. Assists resilience to adverse impacts of climate change

E. Sustainable Community/Participation/Education/Environmental Justice

14. Systematic Institutional arrangements for public and stakeholder consultation, preferably with regular publicly available reports of scheme outcomes

Please provide your feedback on the 14 indicators proposed for MAR score with the following scale: Do not include 0 OK to include 4 Good to include 7 Must include 10

